
'MSC. —E0IK— Noc-'r

ShareSync: A Solution for Deterministic Data Sharing over
Ethernet

Daniel J. Dunn II ` , William A. Koons t , Richard D. Kennedy', and Philip A. Davis§
Miltec Systems, Huntsville, AL, 35806

As part of upgrading the Contact Dynamics Simulation Laboratory (CDSL) at the NASA
Marshall Space Flight Center (MSFC), a simple, cost effective method was needed to
communicate data among the networked simulation machines and I/O controllers used to
run the facility. To fill this need and similar applicable situations, a generic protocol was
developed, called ShareSync. ShareSync is a lightweight, real-time, publish-subscribe
Ethernet protocol for simple and deterministic data sharing across diverse machines and
operating systems. ShareSync provides a simple Application Programming Interface (API)
for simulation programmers to incorporate into their code. The protocol is compatible with
virtually all Ethernet-capable machines, is flexible enough to support a variety of
applications, is fast enough to provide soft real-time determinism, and is a low-cost resource
for distributed simulation development, deployment, and maintenance. The first design cycle
iteration of ShareSync has been completed, and the protocol has undergone several testing
procedures including endurance and benchmarking tests and approaches the 2001ts data
synchronization design goal for the CDSL.

Nomenclature
API = Application Programming Interface
CDSL = Contact Dynamics and Simulation Laboratory
COTS = Commercial-off-the-shelf
DLL = Dynamic Link Library
GUI =	 Graphical User Interface
HWIL = Hardware-In-The-Loop
IRQ = Interrupt Request
ISS = International Space Station
MSFC = Marshall Space Flight Center
NI = National Instruments
NIC = Network Interface Card
OS = Operating System
RTOS = Real Time Operating System
SCR,4Wet = Shared Common RAM Network
TCP = Transmission Control Protocol
UDP = User Datagram Protocol
VME = Virtual Machine Environment

I. Introduction

S hardware-in-the-loop (HWIL) simulation laboratories begin to take advantage of today's readily-available,
low-cost, distributed computing resources, reliable communication solutions are necessary to guarantee that

data is available to those who need it real-time. ShareSync is a publish-subscribe communication protocol designed
for reliable, low latency data replication between distributed computing nodes. The need for such a protocol became

Systems Engineer, Space Programs Division, Member AIAA.
t Director of Programs, Space Programs Division.
$ Software Engineer, Space Programs Division.
§ Systems Engineer, Space Programs Division.

1
American Institute of Aeronautics and Astronautics

apparent while upgrading the simulation infrastructure to the Marshall Space Flight Center (MSFC) Contact
Dynamics Simulation Laboratory (CDSL).

Other solutions at both the hardware and software levels were considered. SCRAMNet (Shared Common RAM
Network), for example, is a proven hardware solution that has been used in real-time applications that require low
latency such as avionics and aircraft simulators. It is reasonably priced for real-time hardware, well-tested, and has
data distribution rates in the nanosecond range. However, reflective memory costs are concentrated at the
component level; each machine, or node, attached to the simulation network must have its own proprietary reflective
memory Network Interface Card (NIC). Reflective memory also has physical distance limitations, with little to no
existing infrastructure, such as fiber optic cables, to connect distant facilities. The primary objective of the
ShareSync protocol is to provide similar benefits utilizing non-proprietary network solutions such as Ethernet.

Ethernet is a low-cost hardware alternative, because its costs are concentrated at the infrastructure level; one
switch, hub, or router can service many attached nodes, and Ethernet NICs are relatively inexpensive compared to
SCRAMNet. Further, Ethernet is the de facto standard for generic computer networking, which allows tremendous
flexibility regarding interconnectivity with other systems. Ethernet can also leverage large existing networks,
including the Internet, and enjoys broad, aggressive development efforts by many standards organizations, and
hardware manufacturers. The primary drawback to using Ethernet hardware for real-time simulations is its non-
deterministic behavior in the event of packet collision on the wire. This problem, however, can be readily solved by
using a full-duplex switched Ethernet infrastructure. Ethernet requires higher-level protocol to transfer data
deterministically.

II. ShareSync Network Protocol

ShareSync is a light-weight soft real-time network protocol based on a publish-subscribe data brokerage model.
Data is made available to other nodes by publishing it via the ShareSync software Application Programming
Interface (API). Likewise, nodes can make requests for the data they require by declaring a corresponding
subscription. The current implementation of ShareSync utilizes the User Data Protocol (UDP) as its transport layer
across the network. This allows increased determinism, as opposed to Transmission Control Protocol (TCP), and
also permits data packets to potentially be simultaneously broadcast to multiple IP addresses.

ShareSync is designed to facilitate soft real-time systems. Soft real-time generally refers to systems that have
deadlines for computational frames, but are not hard-wired in such a way that it is always possible to meet the
deadlines, or have limited/mild consequences for failure to complete on-time'. Soft real-time systems may encounter
frame overruns due to software failures or over-burdening of the computational resources, but are generally more
flexible and can utilize more generic, lower-cost hardware. A deterministic system is defined for the purpose of this
paper as a repeatable, predictable system with only minor tolerable variance of latency. A real-time system with
predictable and repeatable inputs and a repeatable initialization is usually considered to be deterministic.

ShareSync employs a turn-order solution based on IP
address to keep the nodes communicating with each Node 1	 Node 2
other and to keep updates consistent within a Publish	 Subscribe	

1synchronization cycle. As shown in Fig. 1, each
subscribing node allocates a block of memory for every 	 2	 ubscribe	 Publish
other publishing node on the network. Each shared- 	 3	 3
memory block contains the variables that all nodes share
with each other on the network. With this turn-order Subscribe	 Subscribe
solution, the first node, which by default is the node with
the lowest IP address, initiates data synchronization by
broadcasting its data packets to every other node in the 	 Node 3
network. The remaining nodes are in a wait state until 	

Su	 \N"11
data from the previous node in the turn order is received. 	

2	 Subscribe
Once the data from the previous node is received, a node
will then transmit its data to all other nodes and then	 Publish	 Publish
return to the wait state to receive data from other nodes
in the network. The process continues until all nodes
have sent their data and received data from all of the Figure 1. ShareSync Data Synchronization
other nodes.

American Institute of Aeronautics and Astronautics

ShareSync utilizes the UDP protocol to transport packets because of its reduced overhead. UDP was chosen over
TCP because it provides packet delivery confirmation. This additional overhead creates scalability and determinism
problems. Lost packets are re-transmitted after a random delay time, which is an unacceptable behavior for a real-
time protocol. UDP sends data packets raw and does not require confirmation. Further, TCP requires an explicit
connection between every pair of machines communicating on the network, incurring non-scalable overhead in
computation and bandwidth. UDP can broadcast or multicast packets to every machine on the network at once.
Delivery confirmation is still achieved due to ShareSync's turn-order system design. Lost packets are easily
detected, logged, and the application or simulation is notified. The simulation is then responsible for handling the
loss of data by terminating if appropriate.

The ShareSync API was designed to be intuitive and easy-to-use. A "ShareSync" singleton class is used to
provide a namespace for all types and methods associated with the protocol, while a "Channel" class template is
used to abstract the data that is to be shared between nodes. If a node needs to publish a variable, it has only to
declare it using the Channel template and call the publisho method. Similarly, a subscribing node would make the
exact same variable declaration, only it would call the subscribeO method instead. An example of a publishing and
subscribing node is shown in Fig. 2.

//Publishing node
#include "ShareSync.h"
int main(int argc, char -argv[])

// Declare a channel
ShareSync::Channel<int> x = some initial value
//Configure ShareSync
ShareSync::configure("./sharesync.cfg");
// Label and publish a channel
x.publish("Variable 1");
//Update all channels and start the real-time phase
Sha reSync::Errorcode errorCode = ShareSync::initRuntimeO;
// Simulation loop
for(;;)

x = some new value

Update all channels
ShareSync::synchronize();

}
I

// Subscribing node
#include "ShareSync.h"
int main(int argc, char *argv[])

// Declare a channel
ShareSync::Channel<int> x;
// Configure ShareSync
ShareSync::configure("./sharesync.cfg");
// Subscribe to a channel with name "Variable 1".
x.subscribe("Variable 1");
// Update all channels and start the real-time phase
Share Sync::Errorcode errorCode = ShareSync::initRuntime U ;
// Simulation loop
for(;;)

Use x here.

Update all channels
ShareSync::synchronize U;

}
}

Figure 2. ShareSync Publish and Subscribe Examples
In this example a subscribing node accesses an individual piece of data on a publishing node — in this case, an

integer, x. Because ShareSync is based on C++ templates, however, any data type may be shared, including user-
defined structs and classes. To use ShareSync, the configured method must first be called to configure it. Parameters
are specified in a simple, XML-based configuration file. Once all channels have been declared and either published
or subscribed, the calling code invokes the initRuntimeo method, which initializes ShareSync with all non-local
ShareSync counterparts. That is to say, initRuntimeo is a blocking call that waits for a handshake signal from all
other nodes using ShareSync. The program will not proceed until each node has reached the same point in
execution. When all nodes are finally ready, all channels are then updated (synchronized) implicitly and the real-
time portion of the simulation begins. When the end of the simulation loop is reached, it is also necessary for
ShareSync to resynchronize using the synchronized call. This function also blocks until all other nodes reach this
point.

Nodes may publish or subscribe to any number of data channels. Channels are designated in ShareSync by
globally persistent variable names that are specified in corresponding calls to publish() and subscribed. If a node
attempts to subscribe to a channel that has not been published, an error message is issued.

In addition to the ANSI/ISO C++ compatible version, a C-callable version of ShareSync also exists. The C
version operates identically to the C++ version in terms of implementation and functionality. The C adaptation
differs only in the API, in that void pointers are used in lieu of templates. A C callable version was needed due to
some limitations of the National Instrument's LabVIEW software not being able to call C++ methods imported
through a Dynamic Link Library (DLL). Full compatibility with the LabVIEW software was desired, since National
Instruments is a leader in measurement and automation, and their products are often used in HWIL, simulation
laboratories, including the CDSL.

American Institute of Aeronautics and Astronautics

III. Contact Dynamics Simulation Laboratory

The initial avionics lab where ShareSync will be tested and
deployed, the CDSL, provides NASA with unique, world-class
capabilities to perform real-time HWIL simulation and testing of
docking and berthing mechanisms and associated control systems.
Simulation support provided by the CDSL includes the testing
and validation of the ISS Common Berthing Mechanism, Space
Shuttle Remote Manipulator System End Effector, and the Orbital
Maneuvering Vehicle Three Point Docking Mechanism'. The
laboratory test stand consists of a Six Degree of Freedom (6DOF)
platform, shown in Fig. 3, and controlled by six hydraulic legs.
With computerized motion transforms, these six legs allow the
platform to move in the six Cartesian degrees of freedom: x, y, z,
roll, pitch, yaw. Directly above the 6DOF platform is a ceiling
mounted stationary platform with limit switches, mechanical Figure 3. CDSL Test Stand-'
isolation, and force / moment sensors installed, both to measure
the encounter forces and to protect the test article and building structure should a collision become too forceful. A
block diagram showing a more detailed breakdown of the simulation model is shown in Fig 4. The equipment
currently used to run the simulation consists of an SGI Challenge 10000 XL which runs the all the simulation code
and a Virtual Machine Environment (VME) I/O system. The VME system interfaces the simulation code to the

6DOF
FORCE

MOMENT
SENSOR

CHASE VEHICLE
CONTROL SYSTEMCHASE VEHICLE

EQUATIONS OF
MOTION

INTEGRATE
EQUATIONS
OF MOTIONTARGET VEHICLE

EQUATIONS OF
MOTION TARGET VEHICLE

^ CONTROL SYSTEM4

	

TABLE	 RELATIVE

	

POSITION	 MOTION

6DOF TABLE

Figure 4. Two Body Docking Model Simulation'

sensors and hydraulics of the test stand, and additional scenario-specific sensors provided by the lab's customer.
The main reason for upgrading the CDSL is to move towards a more common simulation environment within the

NASA centers and research facilities. This common simulation environment utilizes the Trick' Simulation Toolkit
which was written for NASA and is used extensively at the Johnson Space Center (JSC) in both real-time and non
real-time simulations. The Trick Simulation Toolkit operates in UNIX and Linux Operating Systems (OS) and can
utilize standard commercial-off-the-shelf (COTS) PCs, which are more powerful and cost much less than the older
SGI Challenge cost to maintain. A block diagram of the new CDSL infrastructure is shown in Fig. 5.

The new infrastructure consists of three 1 Gb Ethernet LANs, all of which are isolated from each other in order
to control and optimize bus utilization. The developer bus is intended to handle asynchronous data communications
between the simulation control graphical user interface (GUI) and the simulation nodes and the 1/0 node. The Trick

4
American Institute of Aeronautics and Astronautics

Simulation Toolkit and models are installed and configured on the simulation nodes, which will utilize the
simulation bus for real-time Trick distributed simulation communication. The I/O node, responsible for interfacing
with the facility hardware, will utilize ShareSync on the private I/O bus network for real-time data synchronization
between the Trick simulation models and the 1/0 node.

The simulation nodes are high-end COTS PC workstations with two AMID Opteron dual-core processors, 8 GB
of system memory, and the Fedora Core 5 Linux OS. While not a Real Time Operating System (RTOS), with
Fedora Core 5, background processes and interrupts can be isolated to specific processors. Additionally, the Trick
Simulation Toolkit has been tested to work with this particular Linux distribution.

The I/O node is a National Instruments (NI) PXI-1045 chassis running LabVIEW Real-time (RT) v8.2 on the
PharLap ETS version 12.0 OS with a 2 GHz processor and 2 GB of RAM. NI's LabVIEW RT programming
environment was chosen for the 1/0 node due to the abundance of drivers already written supporting both NI's data
acquisition and interface cards, as well as, PXI and cPCI cards from other companies.

IV. Implementation and Test

A beta version of the ShareSync protocol was developed according to the design specification, and verification
and validation testing was performed at the MSFC CDSL. The protocol was compiled for Microsoft Windows and
Linux OSs. The primary test objectives were to verify the software implementation, to demonstrate the protocol's
data sharing capabilities, and to test the protocol's reliability using UDP on the dedicated Gb Ethernet UO LAN.

The first test scenario utilized a simple test driver to interface with the ShareSync Protocol API to synchronize
data packets of varying sizes between two Linux workstations. Following successful testing between two
workstations, additional nodes were added to the test configuration. Whereas the Linux workstations were
representative of the CDSL simulation nodes, these
additional nodes added to the test configuration consisted 	 vh Bus

of Dell Inspiron laptops with 100 Mb LAN ports and 	 1 Gb Ethernet LAN

running Microsoft Windows XP. The primary purpose of	 Linux	 i

adding these nodes was to validate the flexibility of the	 Workstation 1
1^B

ShareSync	 Windows
protocol to synchronize data on differing platforms. The	 API	 100 MB	 Laptop 1
test configuration is shown in Fig. 6.	 -------- O haresyn	 i

The initial test with the two Linux workstations 	 I API I
focused on increasing the size of the data packet from a
single byte up to 64 kB, the maximum size packet that can 	 i

be communicated using UDP without splitting data into	 Linux
multiple packets. After verifying that ShareSync 	 Workstation 2	 Windows

successfully synchronized packets of various sizes, the 	 1 ^B	 100 MB	
Laptop 2

next step n the testing process involved executing the	
snaresyn

P	 g P	 g	 _ _ _ _API	
-- — --

ShareSyn	 j
protocol for an extended period of time to verify that the 	 API

ShareSync protocol using UDP would be able to support a
simulation without losing packets. ShareSync is designed
to timeout after a user-specified duration should a loss of Figure 6. ShareSync Test Configuration
data occur; however, with a dedicated full-duplex Ethernet
switch, it is anticipated that the occurrence of lost data will be rare. A test driver was developed to publish and
subscribe 4 bytes of data on each node as fast as possible for an indefinite period of time. This test driver was run on
several occasions for up to 15 hours per test, and no packets were dropped in any of the test cases. For the purpose
of the CDSL application, these results are encouraging because a typical CDSL simulation usually lasts on the order
of a few minutes.

The final phase of the verification process involved adding the additional laptop nodes to the data sharing
network. Simulations using this configuration were also run for extended periods of time, exceeding 10 hours in
duration, without experiencing any packet loss. While benchmarking was not attempted during any of the
verification and validation testing activities, results of the exercise proved that the ShareSync protocol
implementation will perform reliably within the context of the CDSL and is flexible enough to support multiple
nodes of varying platforms.

Following the successful verification and validation testing activities, ShareSync was integrated with the Trick
Simulation Toolkit and NI's LabVIEWTm Real-time v8.2 programming language and the laboratory infrastructure
was configured as shown in Fig. 5. While the CDSL Trick simulation models were not integrated at this point, the

American Institute of Aeronautics and Astronautics

objective was to integrate the protocol into the actual HWIL infrastructure and benchmark the performance of
ShareSync when communicating between a simulation node and the PXI I/O chassis.

The CDSL hardware facility requires a minimum sync Sync	 Frame
simulation cycle of 2 milliseconds per frame as illustrated Start End	 Deadline

in Fig. 7. Minimally, the new infrastructure, must meet this 	 Simulation Frame (2 ms)
requirement. While simulation performance is expected to
increase significantly, the design goal is to allocate 90% of 	 Simulation Execution Time

the 2 millisecond frame to the simulation execution and the
remaining 10% to data synchronization. The expected size
of the data that will be shared between the simulation and 	 Time

I/O nodes is approximately 800 bytes. Thus ShareSync
must be able to complete data synchronization of 800 bytes Figure 7. CDSL Simulation Frame
within 200µs. The objective of the benchmarking activity
was to verify that ShareSync can deterministically meet this design goal.

After developing test drivers in Trick and LabVIEW, test cases were developed to benchmark the
synchronization cycle performance for data packets ranging from 100 bytes to 2,000 bytes. For benchmarking
purposes, the UO node measured the time difference between synchronization from one frame to the next and stored
the results into an array. Using the Linux isolcpus command all of the background process running in the OS were
isolated to processor 0 of the four processor system. Additionally, the Linux command noirgbalance was used to
assign all of the interrupt request (IRQ) activities to processor 0. With the processors isolated, the IRQ activity for
the interrupt containing the Ethernet device was assigned to processor 2 and the simulations were executed so that
they would only run on processor 3, effectively
isolating the simulation and the Ethernet bus	

a5o

from the other processes running on the	 9 s
simulation node.	

0
300

The simulation node was configured with a 	 e 250

test driver built in the Trick environment that	 E zoo
was set up to synchronize every 2 milliseconds, .;150

essentially creating a 2 millisecond frame. Tests 	 100

were conducted to profile the synchronization	 50

latency or data packet sizes between 100 and 	 oY	 p	 too	 zoo	 aoo	 soo	 sac	 1,000	 2,000	 a,000	 s,000

8,000 bytes. Each test case consisted of 30,000 	 packet Size (Bytes)

synchronization events several iterations were
executed. For the test, 1 Gb PCI NICs were
used to connect the simulation node and 1/0 Figure 8. ShareSync Latency
node to the 1 Gb Ethernet switch The results
of these tests produced average synchronization
times that did not vary much at all up to 2,000
bytes as shown in Fig. 8.

Fig. 9 illustrates the determinism of
ShareSync in the tested environment. Over
98% of the synchronization delays for the 800
byte, 1,000 byte, and 2,000 byte test scenarios
were within 25µs of each other. These results
are typical for all of the test cases that were
performed using the PCI LAN port. While the
average synchronization latency exceeded the
200µs design goal, the overall results of the
testing activities are encouraging and indicate
that the Shares nc rotocol is ca able ofY p	 P
providing a soft real-time deterministic
communication option for the CDSL.	 Figure 9. ShareSync Synchronization Latency Histograms

35000

30000

25000

20000

15000

10000

5000

0
150 175 200 225 1	 250 275 300 325 350

F
n 800 Bytes 0 6 452 29480 59 3 0 0 0

0 1K Byte 0 2 539 29390 60 9 0 0 0

p 2K Bytes 0 0 75 29456 56 4 10 47 352

6
American Institute of Aeronautics and Astronautics

V. Conclusion

The ShareSync protocol has undergone its first phase of testing and has been shown to be a reliable means of
communication, capable of meeting the real-time goals and requirements of the CDSL, using only COTS computer
hardware. The results from the first phase of testing showed that ShareSync can perform for an extended duration,
well beyond the normal operation duration for a simulation using the new hardware in the CDSL. The
benchmarking test results revealed that ShareSync executing on the Gb Ethernet I/O node bus is capable of
supporting deterministic data sharing in the 200 µs — 225µs range. Additional tests were conducted utilizing the
simulation node's onboard Gb Ethernet port which easily meet the 200µs average goal, however, in this
configuration, the system suffers from occasional non-deterministic outliers (overruns) in the 10 millisecond range,
which is believed to be caused by the Linux drivers installed. Further testing is required, however, these results
suggests that improved hardware, such as PCI Express (PCI-E) NICs, 10 GbE switches and NICs, enhanced onboard
drivers, and potential optimizations to the software will improve the protocol's performance.

The next step is to incorporate ShareSync into a fully developed simulation with Trick and LabVIEW TM, first
running a mock-up of the CDSL's test platform and eventually running the actual test platform. These tests would
allow the actual integrated cycle times to be determined. The benchmark results, while above 200µs at this time, are
still well within acceptable operational parameters for the CDSL. Further tests will determine the impact of
additional nodes, more data, and possibly other base protocols on synchronization cycle time.

Acknowledgments

The authors would like to acknowledge the support of the MSFC Avionics System Test Branch Ms. Linda
Brewster, Mr. Drew Hall, and Mr. Nick Johnson, and our Jacobs Team Lead Mr. Bobo Hand.

References
' T. Bohman, "Shared-Memory Computing Architectures for Real-Time Simulation-Simplicity and Elegance", Technical

report, Systran Corporation, 1994.

2 P Doyle, "Introduction to Real-Time Ethernet I", The Extension: A Technical Supplement to Control Network [online
journal], Vol. 5, Issue 3, May-June 2004, URL: http://www.datalinkcom.net/Real Time Ethernetl.pdf [cited 15 April
2007].

3 D. Hall, B.M. Sloane, P. Tobbe, "Modeling and testing of docking and berthing mechanisms", Technical Whitepaper,
Aeronautics and Space Administration, Marshall Space Flight Center, AL, USA 35812; Dynamic Concepts, Inc., 6700 Odyssey
Drive, Suite 202, Huntsville, AL, USA 35812

4 E. Paddock, A. Lin, K. Vetter, E. Crues, "TRICK: A Simulation Development Toolkit", AIAA Modeling and Simulation
Technologies Conference & Exhibit, August 2003, AIAA 2003-5809.

7
American Institute of Aeronautics and Astronautics

